世界杯加纳

空间 (数学)

线性空间与拓扑空间

编辑

图 4: 空间之间的关系:线性空间、拓扑空间等

线性空间(也称向量空间)和拓扑空间是两个基本空间。

线性空间具有代数性质,有实线性空间(实数域上)、复线性空间(复数域上),以及更一般的任意域上的线性空间。复线性空间也是实线性空间(后者是前者的基),例如一维复线性空间的复平面可以同构变换为二维实线性空间;实线则只能被视作一维实线性空间。更一般地说,域上的向量空间也具有子域上的向量空间的结构。

根据定义,线性空间中的线性运算产生了直线(及平面等线性子空间)、平行线、椭圆(及椭球)等概念。但是无法定义正交(垂直),也找不到圆,因为线性空间中没有标量积那样的结构来测量角度。线性空间的维度是线性独立向量的最大数目,也等价于跨空间的向量的最小数目;这个数可能是无限的。同一域上的两个线性空间只有在维度相同时才同构;n维复线性空间也是2n维实线性空间。

拓扑空间具有分析性质。根据其定义,拓扑空间中的开集可引出连续函数、路径、映射;收敛数列、极限;内部、边界、外部等概念。而一致连续、有界集、柯西序列、可微函数(路径、映射)则仍未定义。拓扑空间之间的同构叫做同胚,它们是两个方向上连续的一一对应关系。开区间(0,1)与整条数线(−∞,∞)同胚,但与闭区间[0,1]、与圆则不同胚。正方体表面与球面同胚,但不与环面同胚。不同维度的欧氏空间不同胚,这一点似乎显而易见,却不易证明。拓扑空间的维度也难以定义,有归纳维数(图形的边界维度通常比图形维度小1的归纳)和拓扑维数等。对n维欧氏空间,两者都等于n。

拓扑空间的子集仍是拓扑空间(相对地,线性空间只有线性子集仍是线性空间)。点集拓扑学研究的任意拓扑空间种类繁多,无法进行基于同胚的完整分类。紧拓扑空间是一种重要的拓扑空间(此类中的一种),其上的连续函数都有界。闭区间[0,1]与扩展实数线[−∞,∞]都是紧空间;开区间(0,1)和数线(−∞,∞)则不是。几何拓扑学研究流形(此类中的另一种),它们与欧氏空间局部同胚(并满足一些额外条件)。低维流形在同胚意义上有完全的分类。

线性结构和拓扑结构都蕴含于拓扑向量空间(或拓扑线性空间)结构。线性拓扑空间是具有连续线性运算的拓扑空间,因此,同样是拓扑的线性空间一般不是线性拓扑空间。

有限维线性空间都是线性拓扑空间,因为其中只有一种拓扑结构,使其成为线性拓扑空间。因此“有限维线性空间”与“有限维线性拓扑空间”等价,所以有限维线性拓扑空间的可逆线性变换都是同胚变换。对有限维实线性空间,这三个维度概念(1个代数维度与2个拓扑维度)是一致的;但在无限维空间中,不同拓扑结构可以符合给定的线性结构,可逆线性变换一般不是同胚变换。

仿射与射影空间

编辑

图 5: 空间之间的关系:仿射空间、射影空间等

通过线性空间引入仿射空间和射影空间 是很方便的,具体如下。n+1维线性空间的n维线性子空间与原空间不同类,包含一个特殊点:原点。用外部向量移动它,就得到n维仿射子空间,这是同累变换。仿射空间不必包含于线性空间中,但与某线性空间的仿射子空间同构。给定域上的所有n维仿射空间都互相同构,用约翰·拜艾兹的话说:“仿射空间是忘记了原点的向量空间。”特别地,线性空间都是仿射空间。

给定n+1维线性空间L中的n维仿射子空间A,A中直线可定义为A与L的二维线性子空间(不与A平行的过原点平面)的交。更一般地说,A的k维仿射子空间是A与同A相交的L的k+1维线性子空间的交。

仿射子空间A的每点都是A与L的一维线性子空间的交点。但L的一部分一维子空间与A平行,可以说它们相交于无穷远。根据定义,(n+1)维线性空间的所有一维线性子空间的集合,是n维射影空间;仿射子空间A则作为合适子集,嵌入在射影空间中。但射影空间本身是同类的。射影空间中的直线对应(n+1)维线性空间的2维线性子空间;更一般地说,射影空间的k维射影子空间对应(n+1)维线性空间的(k+1)维线性子空间,且与k维射影空间同构。

这样,仿射空间和射影空间具有代数性质;它们可以是实空间、复空间,可以是任何域上的空间。

实或复仿射空间或射影空间也是拓扑空间。仿射空间是非紧流形,而射影空间是紧流形。在实射影空间中,直线与圆同胚,因此是紧的,这与仿射空间线性中的直线不同。

度量空间与一致空间

编辑

图 6: 空间之间的关系:度量空间与一致空间等

度量空间定义了点之间的距离。度量空间之间的同构称为等距(isometry)。度量空间是拓扑空间;若拓扑空间可蕴含于度量空间,称拓扑空间可度量。所有流形都可度量。

度量空间中,可以定义闭集和柯西序列。称所有柯西序列收敛的度量空间为完备空间。不完备空间都作为稠密集,嵌入到某个完备空间中;紧度量空间都是完备空间;数线是非紧完备空间;开区间(0,1)不完备。

欧氏空间都是完备空间。此外,欧氏空间的所有几何概念都可用度量描述。例如,连接两定点A、C的直线段由所有点B组成,这样|AC|等于|AB|+|BC|。

豪斯多夫维数(与覆盖给定集的小球数有关)适用于度量空间,可以不是整数(如分形)。n维欧氏空间的豪斯多夫维数都是n。

一致空间没有距离,但仍允许均匀连续与柯西序列(或柯西滤子或柯西网)、紧与完备。一致空间都是拓扑空间;线性拓扑空间(无论可否度量)也是一致空间,在有限维时完备,在无限维时通常不完备。更一般地说,交换拓扑群都是一致空间。非交换拓扑群则蕴含左不变、右不变两个一致结构。

赋范空间、巴拿赫空间、内积空间与希尔伯特空间

编辑

图 7:空间之间的关系:赋范空间、巴拿赫空间等

欧氏空间中的向量构成线性空间,但每个向量x都有长度,即范数

x

{\displaystyle \lVert x\rVert }

。具有范数的实或复线性空间就是赋范空间。赋范空间既是线性拓扑空间,又是度量空间。巴拿赫空间是完备赋范空间,许多序列或函数的空间都是无穷维巴拿赫空间。

范数<1的所有向量之集构成赋范空间的单位球,是凸的中心对称集,一般不是椭球,可能是多边形(平面上),或更一般地是多面体(在任意有限维上)。平行四边形法则

x

y

2

+

x

+

y

2

=

2

x

2

+

2

y

2

,

{\displaystyle \lVert x-y\rVert ^{2}+\lVert x+y\rVert ^{2}=2\lVert x\rVert ^{2}+2\lVert y\rVert ^{2}\ ,}

在赋范空间中通常不适用,但在欧氏空间中对向量成立,因为向量的欧氏平方范数是它与自身的内积:

x

2

=

(

x

,

x

)

{\displaystyle \lVert x\rVert ^{2}=(x,x)}

.

内积空间是实或复线性空间,具有双线性或半双线性形式,满足某些条件,称为内积。内积空间都是赋范空间。当且仅当赋范空间满足平行四边形法则,或其单位球是椭球时,它才蕴含于内积空间。内积空间定义了向量夹角。

希尔伯特空间是完备内积空间(有人坚称其必须是复空间,另一些人也承认实希尔伯特空间) 。许多序列或函数的空间都是无穷维希尔伯特空间。希尔伯特空间在量子力学中非常重要。[11]

n维线性实内积空间都互相同构。可以说,n维欧氏空间就是无原点的n维实内积空间。

光滑流形与黎曼流形

编辑

图 8:空间之间的关系:光滑流形、黎曼流形等

光滑流形不叫做“空间”但可以是。光滑流形都是拓扑流形,可以嵌入有限维线性空间。有限维线性空间中的光滑面是光滑流形:例如,椭球面是光滑流形,而多面体表面则不是。实或复有限维线性、仿射、射影空间也是光滑流形。

光滑流形中的光滑路径的每点上都有切向量,其属于流形在这一点上的切空间。n维光滑流形的切空间是n维线性空间。光滑流形上光滑函数的微分提供了切空间上每一点的线性函数。

黎曼流形或黎曼空间是切空间有内积、满足部分条件的光滑流形。欧氏空间是黎曼空间,欧氏空间中的光滑面也是黎曼空间,双曲非欧空间也是黎曼空间。黎曼空间中的曲线有长度,两点之间最短曲线的长度定义了距离,因此黎曼空间是度量空间。交于一点的两条曲线间的夹角是切线间的夹角。

若放弃切空间内积的正定性,就得到了伪黎曼流形,包括对广义相对论非常重要的洛伦兹空间。

可测、测度空间与概率空间

编辑

图 9:空间之间的关系:可测、测度空间等

再放弃距离和角度,保留(几何体的)体积,就得到了测度。根据柯尔莫果洛夫的概率论方法,在体积之外,测度还可以是面积、长度、质量(或电荷)分布、概率分布等概念。

经典数学中的“几何体”远比一组点更有规律。几何体的边界体积为零,因此集合体的体积就是内部的体积,可以由无限立方体序列穷尽。相反,任意点集的边界体积可以非零(例如给定立方体内部所有有理点的集合)。测度论将体积概念扩展到了一大类集合,即所谓可测集。不可测集在应用中几乎从未出现过。

可测空间中给出的可测集会产生可测函数与映射。将拓扑空间转为可测空间,要赋予σ-代数。最常用的是博雷尔集的σ-代数,也有其他选择(有时也用贝尔集、普遍可测集等)。

拓扑并不由博雷尔σ-代数唯一确定;例如,可分希尔伯特空间上的赋范拓扑和弱拓扑会产生相同的博雷尔σ-代数。

σ-代数并不都是某拓扑的博雷尔σ-代数。[c]

实际上,σ-代数可由给定集合(或函数)生成,而与拓扑无关。可测空间的每个子集本身也是可测空间。

标准可测空间(也称为标准博雷尔空间)与紧空间有相似性,因而特别有用(见EoM (页面存档备份,存于互联网档案馆))。标准可测空间之间的每个双射可测映射都同构,即反映射也可测。而此类空间之间的映射可测,当且仅当图在积空间中也可测。相似地,紧可测空间之间的连续双射都是同胚映射,即逆映射也连续。当且仅当其图在积空间中为闭,此类空间之间的映射采才连续。

欧氏空间(更广义地说,是完备可分可测空间)中的每一个博雷尔集,只要赋予博雷尔σ代数,就是标准可测空间。所有不可数标准可测空间都相互同构。

测度空间是赋予了测度的可测空间。具备勒贝格测度的欧氏空间是测度空间。积分论定义了测度空间上可测函数的可积分性和积分。

测度为0的集合称为空集,是可忽略的。因此“模0同构”被定义为全测度(即有可忽略补集)子集间的同构。

概率空间也是可测空间,整个空间的测度为1。任何概率空间族(有限或无限)的积仍是概率空间;相对地,对一般测度空间,只有有限多空间的积才有定义。因此,有许多无限维概率测度(特别是高斯测度),但没有无限维勒贝格测度。

标准概率空间非常有用。其上,条件期望可视作对条件度量的积分(常规条件概率,另见离散测度)。给定两个标准概率空间,它们的测度代数 (页面存档备份,存于互联网档案馆)的同态都由某保测映射引入。标准可测空间上的概率测度都会产生标准概率空间。标准概率空间序列(有限或无限)的积还是标准概率空间。所有非元标准概率空间都互为模0同构,其中一个是具有勒贝格测度的区间(0,1)。

这些空间不那么几何。特别是,维度的概念(以各种形式)适用于所有其他空间,却不适用于可测空间、测度空间和概率空间。

非交换几何

编辑

微积分的理论研究,即数学分析,在20世纪初开始考虑实、复值函数的线性空间。最早的例子是函数空间,每个函数空间都适用于一类问题。这些例子有许多共同特征,很快被抽象为希尔伯特空间、巴拿赫空间和更一般的拓扑向量空间。这些都是解决各种数学问题的强大工具。

巴拿赫代数的一类空间提供了最详尽的信息,是带有连续乘法运算的巴拿赫空间。早期的重要例子是测度空间X上有界可测函数的巴拿赫代数,这类函数在逐点加与标量乘法下是巴拿赫空间。有了逐点乘,它就成了一种特殊的巴拿赫空间,现称为交换冯诺依曼代数。逐点乘决定了这代数在X上平方可积函数的希尔伯特空间上的表示。冯·诺依曼的早期发现是,这种对应关系也可以反向起作用:给定一些温和的技术假设,交换诺依曼代数与希尔伯特空间上的表示一同决定了一个测度空间,而这两种构造(诺依曼代数加测度空间的表示)是互逆的。

冯·诺依曼随后提出,非交换诺依曼代数应像交换诺依曼代数一样有几何意义。他与Francis Murray共同提出了诺依曼代数的分类。直积分构造说明了如何将任何诺依曼代数分解为更简单的代数集,即因子。冯·诺依曼和Murray将因子分为三类。第一类与交换情形几乎相同;第二类和第三类表现出新的现象。第二类诺依曼代数确定了新的几何,其特殊之处在于,维数可以是任何非负实数;第三类异于前两类,经过几十年的努力,被证明与第二类因子密切相关。

与冯·诺依曼和Murray的因子分类工作同时发展起来的,还有一种略有不同的函数空间几何方法,这就是C*-代数。此处,激励性的例子是C*-代数

C

0

(

X

)

{\displaystyle C_{0}(X)}

,其中X是局部紧的豪斯多夫拓扑空间。由定义可知,这是X上连续复值函数的代数,这些函数在无穷远处消失(宽泛地说,离所选点越远,函数越趋近于零),具有逐点相加乘的运算。盖尔范德-奈马克定理表明,交换C*-代数与几何对象之间有对应关系:对某个局部紧豪斯多夫空间X来说,交换C*-代数都是

C

0

(

X

)

{\displaystyle C_{0}(X)}

形式。因此,我们有可能纯粹根据交换C*-代数研究局部紧豪斯多夫空间。非交换几何以此为灵感,研究非交换C*-代数:若有非交换空间X,则其

C

0

(

X

)

{\displaystyle C_{0}(X)}

将是非交换C*-代数;此外,若盖尔范德-奈马克定理适用于这些非实在对象,那么空间(无论紧否)将与C*-代数相同;因此,由于缺乏直接定义非交换空间的方法,非交换空间被定义为非交换C*-代数。许多标准几何工具都可用C*-代数重述,这为研究非交换C*-代数提供了几何启发。

这两个例子现在都属于非交换几何。诺依曼代数和C*-代数的具体例子分别被称为非交换测度论和非交换拓扑学。非交换几何不仅是为了追求一般性而追求,也不仅是一种好奇心。非交换空间自然产生于某些构造中,甚至不可避免,例如用风筝形和飞镖形填满平面的彭罗斯密铺。有这样一个定理:这样的密铺中,风筝和飞镖的每个有限片段出现的频率都无限多,因此不能通过观察有限部分来区分两个彭罗斯密铺。彭罗斯密铺确定了非交换C*-代数,所以可用非交换几何工具来解决。另一个例子也是微分几何中非常有趣的例子,来自流形的叶状结构。流形分割为低维子流形(叶),每片叶都与附近的叶局部平行。所有叶组成拓扑空间,但无理旋转的例子表明,经典测度论无法进入这个拓扑空间。不过,有与叶空间关联的非交换诺依曼代数,再次为本不可理解的空间赋予了良好的几何结构。

概形

编辑

图 10:空间之间的关系:概形、叠等

代数几何研究多项式方程的几何性质。多项式是由基本算术运算加法和乘法定义的函数,因此多项式与代数密切相关。代数几何提供了一种将几何技术应用于纯代数问题的方法,反之亦然。

在1940年代之前,代数几何只处理复数,最基本的簇是射影空间。射影空间几何与透视理论密切相关,其代数由齐次多项式描述。所有其他种类都被定义为射影空间的子集。射影簇是由一组齐次多项式定义的子集。在射影簇的每点上,集合中的所有多项式都必须等于零。线性多项式零集的补是仿射空间,仿射簇是射影簇与仿射空间的交。

安德烈·韦伊发现,几何推理有时适用于数论情形,其中的空间可能是离散的,甚至可能是有限的。为此韦伊重新阐释了代数几何的基础,使代数几何摆脱了对复数的依赖,又引入了不嵌入射影空间的抽象代数簇,现在统称为簇。

作为大多数现代代数几何基础的空间类型要比韦伊的抽象代数簇更广泛,叫做概形,由亚历山大·格罗滕迪克提出。概形论的动机之一是,多项式在函数中的结构非同寻常,代数簇因此是刚性的。在退化情形这就带来了问题。例如,圆上几乎任何一对点都能确定唯一的正割线,这两点绕圆移动时,正割线不断变化;而当两点相撞时,正割线就退化为唯一的切线,但圆上的单点这种构造的几何特征并不足以唯一确定一条线。这时,需要一种能为退化情形分配额外数据的理论。

拓扑空间是概形论的组分之一。拓扑空间具有连续函数,但过于笼统,难以反映底层代数结构。因此概形的另一个要素是拓扑空间上的层,称作“结构层”。在拓扑空间的每个开子集上,结构层制定了函数集合,称作“正则函数”(regular function)。拓扑空间和结构层必须共同满足条件:函数来自代数运算。

与流形类似,概形也被定义为以初等模型为局部近似的空间。流形中,这种初等模型是欧氏空间;概形中,这种初等模型叫做仿射概形。仿射概形提供了代数几何与交换代数的直接联系。交换代数的基本研究对象是交换环,交换环R有相应的仿射概形

Spec

R

{\displaystyle \operatorname {Spec} R}

,将R的代数结构转为几何结构。反过来,仿射概形决定了交换环,即其结构层的全局截面的环。这两种运算互逆,因此仿射概形提供了一种研究交换代数问题的新方式。由定义,概形中的每个点都有开邻域,就是仿射概形。

仿射概形之外还有很多。特别地,射影空间满足固有性(类似于紧性)条件。仿射概形不满足固有性(非平凡情形),因此射影空间都不是仿射概形(非平凡情形)。射影概形,即射影空间的闭子概形,是最重要的一族概形。[12]

概形有一些推广的尝试。迈克尔·阿廷将代数空间定义为由定义了平展态射的等价关系构成的概形之商。代数空间保留了概形的许多有用性质,同时也更灵活,例如Keel–Mori定理可证明许多模空间都是代数空间。

比代数空间更一般的是德利涅-芒福德叠(DM stack),与概形类似,但允许出现无法完全用多项式描述的奇点。它们之于概形,好比轨形之于流形。例如,仿射平面通过绕原点旋转的有限群之商,得到不是概形也不是代数空间的DM叠。在远离原点的地方,群作用的商确定了圆上等距点的有限集;在原点处,群作用固定了这个点。在商DM叠中,这点则变为带有额外数据的商。这样的细化结构在模空间论中非常有用,最初用来描述的其实是代数曲线的模。

进一步的推广是代数叠或阿廷叠。DM叠限于有限群作用的商,虽然足以解决模理论中的许多问题,但对其他问题仍有很多限制,而阿廷叠允许更多的商。